New hope for sepsis treatment

UCSD scientists explore the role of PHLPP1 and how its absence can boost survival in mice
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00
SAN DIEGO—Generally when the body is faced with an infection, the immune system steps up to eradicate it, sending immune cells to destroy the invading bacteria. In the case of sepsis, however, the immune system floods the body with too severe of a response, leading to widespread inflammation—which can then progress to septic shock and death.
Continue reading below...
A black mosquito is shown on pink human skin against a blurred green backdrop.
InfographicsDiscovering deeper insights into malaria research
Malaria continues to drive urgent research worldwide, with new therapies and tools emerging to combat the parasite’s complex lifecycle and global burden.
Read More
At present, the standard of care consists of antibiotic regimens, but as antibiotic-resistant bacteria become more prevalent, treatment becomes more difficult. But a new target might be available: PHLPP1. When researchers from the University of California (UC) San Diego School of Medicine removed the enzyme in a mouse model of sepsis, they found that the mice experienced better outcomes. Their results appeared in eLife in a paper titled “PHLPP1 counter-regulates STAT1-mediated inflammatory signaling.”
“Severe sepsis strikes more than a million Americans every year, and 15 to 30 percent of those people die. The number of sepsis cases per year is increasing the U.S., because the average age of the population is on the rise and people with chronic diseases are living longer,” says Dr. Victor Nizet, an expert on bacterial infections and one of the UC San Diego School of Medicine researchers involved with this work. “Sepsis is more common and more dangerous in the elderly and in those with chronic diseases. Sepsis accounts for approximately for $25 billion in healthcare expenditures annually. There is currently no drug approved for sepsis beyond antibiotics and supportive care in the ICU. Antibiotic-resistant infections can lead to sepsis, and the ever-expanding antibiotic resistance crisis is worsening the situation. Identifying specific sepsis treatment or prevention strategies is therefore a critical public health priority.”
Continue reading below...
A white, pink, and blue 3D molecular structure of a simple sugar is shown against a light purple background.
WebinarsAdding a little sugar: what glycomics can bring to medicine
Discover how glycoscience is transforming how scientists understand diseases and opening new doors for drug discovery.
Read More
“Discoveries like ours of fundamental signaling pathways that control immune cell behavior during sepsis offer clues for controlling the dangerous inflammation of sepsis while preserving the critical bacterial killing properties of white blood cells,” he added.
PHLPP1 (PH domain Leucine-rich repeat Protein Phosphatase 1) controls certain cell behaviors by removing small chemical tags known as phosphates from other proteins. The enzyme plays a role in several biological processes, such as immune response and tumor suppression, and the authors note that “PHLPP1 inhibition could be a strategy to promote cartilage regeneration and repair” as well.
One specific way in which PHLPP1 impacts inflammation is by removing phosphates from the STAT1 transcription factor, which controls inflammatory genes.
“Most research on inflammation has typically focused on kinases, enzymes that add phosphate tags to other proteins,” said Dr. Alexandra Newton, a professor in the Department of Pharmacology at the UC San Diego School of Medicine and senior author of the eLife paper. “It’s exciting to have a completely new target for sepsis—the enzymes that remove them.”
Continue reading below...
An illustration of various colored microbes, including bacteria and viruses
WebinarsCombatting multidrug-resistant bacterial infections
Organic molecules with novel biological properties offer new ways to eliminate multidrug-resistant bacteria.
Read More
This is hardly the first time Newton’s team has worked with PHLPP1, as they were the ones to discover it a few years ago. So far, their work with the enzyme has focused on its role in tumor suppression. For this work in inflammation, they worked together with Dr. Chris Glass and his team, also of UC San Diego School of Medicine, as well as Nizet.
Newton’s team provided Nizet with genetically modified mice that lacked the PHLPP1 gene, to which Nizet and his team introduced live E. coli bacteria and lipopolysaccharide (LPS), a component of the bacterium’s cell wall that triggers the immune system. What they found was that compared to normal mice, those lacking PHLPP1 saw much better survival outcomes—all normal mice died of infection-induced sepsis after five days, but at that point half of the PHLPP1-deficient mice were still alive.
“This is the first evidence that we have that PHLPP1 is associated with sepsis. We originally discovered PHLPP1 when looking for a phosphatase to dephosphorylate and inactivate the proto oncogene, Akt. So for the first few years after its discovery, we focused on its role in terminating the signaling by Akt, and its role as a tumor suppressor,” Newton tells DDNews.
Continue reading below...
A syringe with a needle drawing the vaccine out of a vial with ampules in the background
InfographicsTurbocharging mRNA vaccine development
Cell-free gene synthesis technology offers a quick, reliable route to creating vital mRNA vaccines and therapeutics.
Read More
“But then we asked the question: what else does PHLPP1 do? For this, we looked at all the genes turned up or down when PHLPP1 is absent, and found that many of these were involved in inflammation,” she continues. “We took two approaches: a biochemical one, which revealed that PHLPP1 acts as the brakes to suppress inflammatory responses in macrophages, and then we looked at the physiology and asked, what happens if you challenge mice with E. coli infection? That’s when we saw the dramatic protection from sepsis-induced death in mice lacking PHLPP1, indicating PHLPP1 may be a potential therapeutic target for sepsis. We still do not know the mechanism behind this, as the biochemistry dealt with one very specific cell type, macrophages, and in the mouse, every type of cell was missing PHLPP1, so many mechanisms could be at play.”
Moving forward, Newton says there is plenty of other work to be done to further explore their findings. She explains that they want to make tissue-specific knock-out models of PHLPP1—ones in which the enzyme is only deleted in macrophages—so that they can “understand the primary mechanism driving its role sepsis, thus bringing us closer to targeting it therapeutically.” They also want to determine how a lack of PHLPP1 offers protection against sepsis.
Continue reading below...
A 3D illustration of blue antibodies floating toward a green colored virus
InfographicsImmunotherapy for infectious diseases
Many of the same therapies used to activate the immune system against cancer may also combat infectious diseases.
Read More
“We would want to specifically target that cell type/mechanism and not interfere with other functions, such as its role as a tumor suppressor,” she notes. “This is possible, but only once we understand the biology at the molecular level. For example, the role of PHLPP1 in suppressing inflammation in macrophages depends on its ability to get into the nucleus, so this ability could be crippled with no effect on its tumor suppressive function of Akt, which depends on other properties of PHLPP1.”
Along with other collaborators, Newton and her team have screened thousands of compounds to identify ones capable of inhibiting PHLPP1, which they plan to test in lab and animal models of sepsis.

About the Author

Related Topics

Published In

Volume 15 - Issue 9 | September 2019

September 2019

September 2019 Issue

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue