| 1 min read
Register for free to listen to this article
Listen with Speechify
0:00
1:00
MOSCOW—For in vivo studies, researchers need fluorescent proteins that fall within the favorable optical window between visible light absorption by water (>1100 nm) and melanin and hemoglobin (<650 nm). The red fluorescent proteins (RFPs) best suited for this window, however, offer limited brightness. Recently, researchers at Evrogen and the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry addressed this problem.
 
As they report in Nature Methods, the researchers mutated TurboRFP, a pH-stable, high-brightness RFP they previously isolated from sea anemone, focusing their efforts on the amino acids surrounding the protein's chromophore. In the process, the researchers generated Katushka, an RFP with high brightness (about 0.67x EGFP) and far-red fluorescence (max 635 nm). Transfected into muscle cells of frogs, Katushka fluorescence was highly visible in both embryos and adult frogs, and exhibited fewer toxic effects than other fluorescent proteins.
 
The researchers then generated a monomeric version of Katushka—mKate—to facilitate the labeling of cellular proteins. mKate offered almost identical fluorescence spectra to Katushka and provided distinct labeling with fused in vivo to β-actin and α-tubulin. The Katushka and mKate also exhibited 2- to almost 6-fold greater photostability than commercially available fluorescent proteins.

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

A black mosquito is shown on pink human skin against a blurred green backdrop.

Discovering deeper insights into malaria research

Malaria continues to drive urgent research worldwide, with new therapies and tools emerging to combat the parasite’s complex lifecycle and global burden.
Three burgundy round and linear conformations of oligonucleotides are shown against a black background.

Accelerating RNA therapeutic testing with liver microphysiological platforms

Researchers can now study oligonucleotide delivery and efficacy in a system that models a real human liver.
A 3D-rendered illustration of a eukaryotic cell highlighting organelles such as the nucleus, endoplasmic reticulum, mitochondria, and cytoskeletal structures in pink and purple tones.

Shining light on the subcellular proteome

Discover how innovative proteomics tools help researchers peer into once inaccessible organelles, allowing for new targets for drug discovery and development.
Drug Discovery News March 2025 Issue
Latest IssueVolume 21 • Issue 1 • March 2025

March 2025

March 2025 Issue

Explore this issue