Tuning in to stereochemistry

Scripps, Bristol-Myers Squibb scientists reveal a method to control thiophosphate linkages in nucleosides
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
LA JOLLA, Calif.—Knowing the 3D structures of molecules is important in helping to answer questions about crystallization or potential binding sites, but in those cases, such knowledge is needed to work with molecules’ natural structures. Thanks to a new tool developed by scientists at Scripps Research and Bristol-Myers Squibb, there’s now an option for bypassing such issues by controlling the 3D architecture—or stereochemistry—of molecules comprised of nucleotides to precisely create desired configurations. Their results were published in Science in a paper titled “Unlocking P(V): Reagents for chiral phosphorothioate synthesis.”
Continue reading below...
Illustration of diverse healthcare professionals interacting with digital medical data and health records on virtual screens.
WebinarsAccelerating rare disease clinical trials
Explore how a rare kidney disease trial achieved faster patient enrollment with data-informed strategies and collaborative partnerships.
Read More
The technology in question has been named phosphorous-sulfur incorporation (PSI), which connects chains of nucleotides (also known as oligonucleotides) into preprogrammed structures. The collaborators tested PSI by using it to synthesize pure 3D forms of the molecular configurations used in drugs like Spinraza (the first approved spinal muscular atrophy therapy) and cyclic dinucleotides (CDNs), a new class of immunotherapy drugs. This approach is also of interest in accelerating efforts to develop single isomer thiophosphate-derived oligonucleotide drugs, molecules that can have hundreds of thousands of stereoisomers. While stereoisomers share the same molecular formula, the spatial configuration of their atoms is different.
“Molecular gene therapies such as emerging CDNs represent remarkable therapeutic potential, but their development and refinement has been hindered by the inability to effectively control the stereochemistry during drug synthesis,” explained Dr. Phil Baran, a Scripps Research professor and senior scientist on the study. “PSI provides a robust and stereocontrolled method of synthesizing oligonucleotide drugs, allowing us to create, analyze and manufacture stereoisomers of a drug candidate in ways that were never before possible.”
Continue reading below...
A scientist wearing gloves handles a pipette over a petri dish and a color-coded microplate in a laboratory setting.
Application NoteThe unsung tools behind analytical testing success
Learn how fundamental laboratory tools like pipettes and balances support analytical precision.
Read More
For some background on oligonucleotides and phosphorothioate, as explained by Millipore Sigma, “Several phosphate backbone variants have been developed in an attempt to alter the chemical properties of native-state DNA and therefore overcome the two major challenges involved with using oligonucleotides in vivo, including: 1) delivery to the interior of the cell through the plasma membrane, a lipid bilayer that, without transport proteins, is mostly impermeable to polar molecules; and 2) extension of the effective molecular lifetime by minimizing extra and intracellular nuclease degradation.
“One of the original and still most widely used backbone variants is phosphorothioate (commonly referred to as S-oligo when incorporated into an oligonucleotide). Phosphorothioate has been found to help alleviate the second major challenge associated with using oligonucleotides in vivo by reducing the activity of a variety of extra and intracellular nucleases.”
The method of synthesizing nucleotides has not changed much over the years. As noted in a supplementary blog post to this work on the Baran laboratory’s website, “We discovered that while the earliest reports of nucleotide synthesis relied on the natural phosphorous (V) oxidation state, the late 1970s saw the lethargic P(V) largely supplanted by P(III) in the form of phosphoramidites and H-phosphonates. Perhaps most striking was the apparent reliance on incremental modifications to advance the field; the P(III)-based phosphoramidite approach remains the standard mode of construction to this day.”
Continue reading below...
A 3D rendering of round clear cells with multiple red round nodules in each cellular center representing nuclei, suspended in a liquid, clear backdrop.
WhitepaperAutomating 3D cell selection
Discover precise automated tools for organoid and spheroid handling.
Read More
A major limitation to P(III) chemistry, however, is the lack of control over the shape of thiophosphorus-centered linkages—a lack that, in thiophosphate-based oligonucleotides, can lead to a product with more than 100,000 stereoisomers. In addition, Justine deGruyter, a Scripps Research graduate student and one of the first authors on the paper, reported that “Using P(III) chemistry to produce even a miniscule amount of the drug as a single stereoisomer form is extremely complicated, which means you can’t produce enough to test which shape is the most effective as a therapy or whether certain isomers might cause side effects.”
To try and find a way around the issues of P(III), the Scripps and Bristol-Myers Squibbs collaborators looked back at P(V), which is less reactive than P(III) but more stable. It took two years to engineer a solution for using P(V) to generate desired stereoisomers of molecules, and PSI was that solution. It links two nucleosides (nucleotides without a phosphorous atom) in a chosen 3D shape, and a benefit of the thiophosphate bond created with the PSI reagent is that it improves a drug candidate’s metabolic stability, and by association, its safety and efficacy.
Continue reading below...
An image of a western blot transfer showing the white, square transfer membrane with orange and blue bands representing the protein molecules undergoing transfer on a black and white machine.
CompendiumExploring stain-free western blotting
Researchers can achieve seamless western blot experiments by implementing advancements in stain-free technology, normalization methods, and compliance integration.
Read More
In addition to CDNs, which play a role in the innate immune response, it’s thought that the PSI reagent approach will also enable a jump in research into antisense oligonucleotide (ASO) drugs. According to a Scripps Research press release, “the ability to synthesize a single stereoisomer will allow scientists to explore what shapes of the drugs are most therapeutically effective and generate those stereoisomers for clinical use.” ASOs, as noted in a Nature Reviews Neurology review article titled “Antisense oligonucleotides: the next frontier for treatment of neurological disorders,” are “short, synthetic, single-stranded oligodeoxynucleotides that can alter RNA and reduce, restore, or modify protein expression through several distinct mechanisms. By targeting the source of the pathogenesis, ASO-mediated therapies have an higher chance of success than therapies targeting downstream pathways.”
With a faster, more accurate way of precisely generating desired stereoisomers, the PSI solution from the Bristol-Myers Squibb and Scripps teams could enable researchers to start to truly explore—and perhaps harness—the potential of ASO and CDN drugs.

About the Author

Related Topics

Published In

Volume 14 - Issue 9 | September 2018

September 2018

September 2018 Issue

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
A 3D rendering of red and yellow protein molecules floating in a fluid-like environment.
Discover approaches that shorten the path from DNA constructs to purified, functional proteins.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue