TSRI thinks it may have found the master regulator of cellular aging

Scientists at The Scripps Research Institute have discovered a protein that fine-tunes the cellular clock involved in aging
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
LA JOLLA, Calif.—Scientists at The Scripps Research Institute (TSRI) have discovered a protein that fine-tunes the cellular clock involved in aging. This novel protein, named TZAP, binds the ends of chromosomes and determines how long telomeres, the segments of DNA that protect chromosome ends, can be. Understanding telomere length is crucial because telomeres set the lifespan of cells in the body, dictating critical processes such as aging and the incidence of cancer.
Continue reading below...
Illustration of diverse healthcare professionals interacting with digital medical data and health records on virtual screens.
WebinarsAccelerating rare disease clinical trials
Explore how a rare kidney disease trial achieved faster patient enrollment with data-informed strategies and collaborative partnerships.
Read More
“Telomeres represent the clock of a cell,” said Eros Lazzerini Denchi, a TSRI associate professor, who is corresponding author of the new study, which was published online recently in the journal Science. “You are born with telomeres of a certain length, and every time a cell divides, it loses a little bit of the telomere. Once the telomere is too short, the cell cannot divide anymore.”
Researchers have been curious for many years now whether lengthening telomeres could slow aging and thus fight age-related disorders. To this end, many scientists have looked into using a specialized enzyme called telomerase to “fine-tune” the biological clock. However, as scientists have also found, unnaturally long telomeres are a risk factor in developing cancer.
“This cellular clock needs to be finely tuned to allow sufficient cell divisions to develop differentiated tissues and maintain renewable tissues in our body and, at the same time, to limit the proliferation of cancerous cells,” said Lazzerini Denchi.
Continue reading below...
A scientist wearing gloves handles a pipette over a petri dish and a color-coded microplate in a laboratory setting.
Application NoteThe unsung tools behind analytical testing success
Learn how fundamental laboratory tools like pipettes and balances support analytical precision.
Read More
In this new study, the researcher found that TZAP controls a process called telomere trimming, ensuring that telomeres do not become too long.
“This protein sets the upper limit of telomere length,” explained Lazzerini Denchi. “This allows cells to proliferate—but not too much.”
For the last few decades, the only proteins known to specifically bind telomeres is the telomerase enzyme and a protein complex known as the Shelterin complex. The discovery TZAP, which binds specifically to telomeres, was a surprise since many scientists in the field believed there were no additional proteins binding to telomeres.
“There is a protein complex that was found to localize specifically at chromosome ends, but since its discovery, no protein has been shown to specifically localize to telomeres,” said study first author Julia Su Zhou Li, a graduate student in the Lazzerini Denchi lab.
“This study opens up a lot of new and exciting questions,” said Lazzerini Denchi.

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue