| 1 min read
Register for free to listen to this article
Listen with Speechify
0:00
1:00
WORCESTER, Mass.—The ability of a cell to repair damage done to its genetic material is key to cell survival and often serves as the line between healthy and diseased tissues. Imaging limitations, however, have made it difficult to get a detailed understanding of biological repair mechanisms at the molecular level. Recently, researchers at the UMass Medical Center, The Jackson Laboratory and Leica Microsystems pushed these limits.
 
In a recent PNAS, the researchers used immunofluorescence to monitor the action of key histone proteins in response to DNA damage caused by exposing cells to carcinogens. In particular, they used a high-resolution confocal microscopy system called 4Pi microscopy, which uses two objectives to look at the same spot and thereby allows researchers to resolve objects (in the z-axis) below 100 nm.
 
The researchers noted that within seconds of DNA damage, the histones were phosphorylated and formed clusters, which the researchers speculate may provide a mechanism for signaling and repair protein assembly. "We look forward to continuing our investigations with the analysis of other nuclear proteins involved in cancer prevention and the repair of DNA damage," said UMass researcher Dr. Brian Bennett.

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

A 3D rendering of motor neurons lit up with blue, purple, orange, and green coloring showing synapses against a black background.

Improving ALS research with pluripotent stem cell-derived models 

Discover new advancements in modeling amyotrophic lateral sclerosis.

Automating 3D cell selection

Discover precise automated tools for organoid and spheroid handling. 
An illustration of the tumor microenvironment, showing cancer cells, T cells, and nanoparticles interacting within a complex biological system

A closer look at the tumor microenvironment 

New technologies are allowing researchers to delve deeper into the complex tumor landscape.
Drug Discovery News November 2024 Issue
Latest IssueVolume 20 • Issue 6 • November 2024

November 2024

November 2024 Issue

Explore this issue