Targeting TGFβ

Research team identifies a hormone that prevents colon cancer from responding to immunotherapy
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
BARCELONA, Spain—Though immunotherapies have been seeing encouraging success in many subsets of cancer, some types fail to respond to such treatments. Colon cancer is one such holdout, but new answers out of the Institute for Research in Biomedicine (IRB) could explain the culprit responsible for such resistance: the hormone TGFβ. Their research appeared in Nature in a paper titled “TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis.”
Nearly half of colon cancer patients—40 to 50 percent—face metastasis of their disease, according to a recent IRB press release, with secondary tumors appearing most often in the liver and lungs. Trying to combat this metastasis is difficult since, as the authors note in their paper, “no prevalent mutations have been associated with metastatic colorectal cancers. Instead, particular features of the tumor microenvironment, such as lack of T-cell infiltration, low type 1 T-helper cell (TH1) activity and reduced immune cytotoxicity or increased TGFβ levels predict adverse outcomes in patients with colorectal cancer.”
Continue reading below...
An illustration showing red cancer cells surrounded by white immune cells interacting on a dark textured background.
ExplainersWhy does immunotherapy work better for some cancers than others?
A powerful tool in modern oncology, immunotherapy doesn’t work the same for everyone. Researchers are exploring why and developing ways to improve its effectiveness.
Read More
While prevailing mutations might be scarce, the authors reported that there are some hallmarks of this disease, as “Progression of colorectal cancer (CRC) generally coincides with successive alterations in four signalling pathways: WNT, EGFR, p53 and TGFβ. Mice bearing compound mutations in these four pathways were recently shown to enable the study of CRC metastasis. We crossed mice bearing conditional alleles in homologues of four key human CRC mutations: Apcfl/fl, KrasLSL-G12D, Tgfbr2fl/fl and Trp53fl/fl (designated A, K, T and P, respectively), and targeted gene recombination to intestinal stem cells (ISCs) by means of the Lgr5eGFP-creERT2 driver, which we designated L.”
The IRB team leveraged AMSBIO’s proprietary 3D organoid technology to develop a mouse model capable of simulating advanced colon cancer in humans. AMSBIO’s offerings feature a variety of matrices and solutions for 3D cell culture, including natural hydrogels, recombinant matrices, artificial scaffolds and scaffold-free systems, solutions that can support 3D cell culturing research.
Continue reading below...
A digital illustration showing a T cell attacking a cancer cell, symbolizing the promise of immune-based therapies in tackling disease.
Ebooks Advancing cell therapies with smarter strategies
Researchers are finding creative ways to make cell therapies safer and more effective.
Read More
“The ability to culture and maintain tumor organoids has been key to the success of this research,” said ICREA researcher Eduard Batlle of IRB. “Organoids, as provided by AMSBIO, offer multiple advantages as preclinical models for cancer research and drug testing.”
This was not an easy process by any means, however. Daniele Tauriello, postdoctoral fellow and first author of the article, noted that “The development of the animal model took us four years, but we hit the nail on the head.”
Once the team had their animal model, they confirmed the similarity of the resulting mouse tumors with human tumors. Armed with that confirmation, they generated a biobank of tumor organoids that were then grafted into immunocompetent mice. The new mouse model replicates the primary characteristics of metastatic colon cancer, providing a way to monitor how elevated levels of TGF-beta allow cancer cells to evade immune detection.
What they found with this mouse model was that, per the study, “Inhibition of the PD-1–PD-L1 immune checkpoint provoked a limited response in this model system. By contrast, inhibition of TGFβ unleashed a potent and enduring cytotoxic T-cell response against tumor cells that prevented metastasis. In mice with progressive liver metastatic disease, blockade of TGFβ signalling rendered tumors susceptible to anti-PD-1–PD-L1 therapy.”
Continue reading below...
Red tumor cells are shown against a teal backdrop showing attachment to tissue.
WhitepaperDecoding the tumor microenvironment with immune profiling
Integrating multiplexed immunohistochemistry with spatial analysis offers a practical way to uncover tumor-immune dynamics.
Read More
When the researchers performed cell-population profiling of either mouse or human colorectal cancer samples, they found that cancer-associated fibroblasts “were the main contributors of TGFβ production.” Treating the mice with galunisertib, a TGFBR1-specific inhibitor, beginning 11 days after the transplantation of mouse tumor organoids “reduced primary tumor size, reduced the extent of carcinomatosis and blocked the appearance of liver metastases. Immunohistochemical quantification showed that galunisertib reduced the number of pSMAD3+ cells, and gene expression profiling demonstrated decreased levels of TGFβ-response signatures in fibroblasts and T cells.”
The IRB team also looked at the effects of galunisertib treatment specifically on liver metastases, and noted a “robust immune response,” one they theorized might inoculate mice against tumor cells. When they challenged the mice with the same mouse organoid tumors, “most tumors were rejected within two weeks in the continued absence of treatment.”
While treatment with galunisertib in mice with overt metastatic disease decreased metastatic burden, it “resulted in few complete remissions,” though the authors did note “increased infiltration of CD4+ T cells and of T-bet+ lymphocytes immediately after initiation of therapy.”
Continue reading below...
A 3D model of a tumor is shown with red blood vessels and blue and red spots showing the many cells involved in the tumor, against a black background.
WebinarsExploring new frontiers in pancreatic cancer treatment with spatial biology
Learn how spatial profiling and patient-derived models uncover what drives therapy resistance in pancreatic cancer.
Read More
The scientists expect this discovery to have a rather immediate impact on the treatment of colon cancer patients, noting that “Oncologists and pharmaceutical companies will soon start clinical assays that combine TGF-beta inhibitors, which are already in clinical use, with immunotherapies. We are convinced that many colon cancer patients will benefit from this therapeutic strategy.”

About the Author

Related Topics

Published In

Volume 14 - Issue 4 | April 2018

April 2018

April 2018 Issue

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue