Mitochondria shown in green on a black background.

Mitochondria can move between cells, boosting the recipient’s energy levels.

Credit: iStock.com/wir0man

T cells get an energy boost from bone marrow

Mesenchymal stem cells form nanotubes with and donate mitochondria to T cells, boosting the immune cells’ cancer fighting abilities.
Andrew Saintsing, PhD
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

Jeremy Baldwin, now a postdoctoral researcher at the Leibniz Institute for Immunotherapy, remembers when he first saw the cancer-treating potential of T cell-based therapies. “Tumors that were the size of maybe baseballs just dissolve away, just melt away like butter,” he said. It was enough to convince him to switch fields from regenerative medicine to cancer immunotherapy. 

Now, Baldwin has teamed up with Luca Gattinoni, who has himself spent more than 20 years exploring strategies for enhancing T cells’ capabilities. In a recent Cell  study, Baldwin and Gattinoni shared the results of their collaboration thus far: Mesenchymal stem cells (MSCs) in bone marrow can donate mitochondria to and consequently boost the energy levels of killer T cells (1).

The history of intercellular mitochondrial transfer research shares a trajectory with Baldwin’s professional journey. Almost 20 years ago, University of Vermont stem cell biologist Jeffery Spees and his collaborators discovered that MSCs can rescue damaged cells by giving them functional mitochondria, pointing to a new strategy for regenerative tissue repair (2). About a decade later, a team led by Malaghan Institute of Medical Research cancer biologist Mike Berridge found that metastatic tumor cells take advantage of this therapeutic strategy by stealing the organelles from their healthy neighbors (3). 

Luca Gattinoni, wearing glasses, stands next to Jeremy Baldwin, in front of a grassy field and blue sky.

Jeremy Baldwin (right) joined Luca Gattinoni (left) and his lab to improve T cell functionality with organelle transplantation.

credit: Jeremy Baldwin

Since Berridge published his work in 2015, evidence has emerged that tumors carry out these mitochondrial heists both for their own benefit and to the detriment of their marks. In 2022, two independent studiesone by Baldwin and Gattinoni — established that cancer cells connect with killer T cells via nanotubes and siphon out mitochondria, draining the immune cells of their energy (4,5). 

“It’s like a tug-of-war,” said Washington University in St. Louis immunologist Jonathon Brestoff, who was not involved in the new study. “It’s really about which cell types have the best fitness advantage.”

Gattinoni’s research group had observed MSCs forming nanotubes with and donating mitochondria to T cells under a scanning electron microscope, but they brought in Baldwin because they needed his tissue engineering expertise to improve their culture system. “The problem was that their transfer rate was initially very low,” said Baldwin. “I had worked a lot with developing co-culture systems.” Within a few months, Baldwin had devised a membrane-separated well system that allowed MSCs and T cells to interact with each other even as the two cell types occupied distinct media suited to their own metabolic needs.

Baldwin explained that the mitochondrial transfer process boils down to three basic steps. The recipient cell first signals that it needs mitochondria. The two cells then build a nanotube bridge to connect with each other, and finally proteins shuttle the organelles from one cell to the other. He and Gattinoni’s team focused on the middle step and used RNA sequencing to see if there were any proteins that made MSCs and T cells more likely to build nanotubes. They found that T cells that failed to take in MSC-derived mitochondria had lower levels of the protein Talin-2, which helps assemble the cytoskeletal elements that enable cells to initiate protrusions from their membranes. 

Baldwin and Gattinoni used CRISPR to delete Talin-2 from MSCs and T cells and found that losing its expression in either cell type was enough to gum up the works. “Basically, the transfer rate goes down a lot,” said Baldwin. 

Brestoff was excited to see progress toward a more complete understanding of nanotube-mediated mitochondrial transfer. “They have identified a new protein that’s involved in that process,” he said.

Still, Baldwin and Gattinoni wanted to know if the donated mitochondria actually mattered in the specific context of T cell-based cancer therapy, so, they checked if the recipient T cells produced more energy after receiving the mitochondria. Using a respirometer, the researchers found that T cells that had received functional organelles consumed oxygen at higher rates than T cells that either had not received any mitochondria or had received damaged mitochondria from MSC donors.

Tumors that were the size of maybe baseballs just dissolve away, just melt away like butter.” 
-Jeremy Baldwin, Leibniz Institute for Immunotherapy

Then, Baldwin and Gattinoni injected T cells with and without MSC-derived mitochondria into mice with tumors. Although both sets of T cells proliferated in the mice’s spleens over the course of a week, RNA sequencing and flow cytometry revealed that those mice with only their own mitochondria had higher levels of proteins associated with stress and cell death than their souped-up counterparts. Furthermore, T cells with MSC-derived mitochondria had more energy, as made evident by their ability to synthesize new proteins from amino acids. This latter effect was even more apparent for T cells found near a mouse’s tumor than for cells collected from the animal’s spleen.

Finally, Baldwin and Gattinoni tested their new method on two types of human immune cells that the Food and Drug Administration has approved for cancer treatment. After spending time in culture with MSCs, chimeric antigen receptor (CAR) T cells were better at eliminating leukemia in vitro  and in mice, and tumor-infiltrating lymphocytes (TILs) were better at fighting melanoma in vitro.

Brestoff was impressed with Baldwin and Gattinoni’s results, and he was intrigued by the possibility that T cells and even other types of immune cells might naturally take advantage of mitochondrial transfer in the bone marrow. “Does it touch all lineages, or is it just the T cells?” he wondered. “There’s a lot more interesting biology that needs to be tackled.”

As a tissue engineer, Baldwin is more focused on refining the transfer protocol for applied medicine. Right now, he’s interested in modifying mitochondria to direct where the donated organelles end up in a recipient cell and in improving MSCs so that they deliver higher quality mitochondria. “We pre-treat them, and they’re basically supercharged,” said Baldwin. “There’s a lot of potential.”

References

  1. Baldwin, J.G. et al. Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficiency. Cell  187, 6614-6630.E21 (2024).
  2. Spees, J.L. et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci  103, 1283-1288 (2006).
  3. Tan, A. et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab  21, 81-94 (2015).
  4. Saha, T. et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat Nanotechnol  17, 98-106 (2022).
  5. Baldwin, J.G. and Gattinoni, L. Cancer cells hijack T cell mitochondria. Nat Nanotechnol  17, 3-4 (2022).

About the Author

  • Andrew Saintsing, PhD
    Andrew joined Drug Discovery News as an Intern in 2023. He earned his PhD from the University of California, Berkeley in 2022 and has written for Integrative and Comparative Biology and the Journal of Experimental Biology. As an intern at DDN, he writes about everything from microbes in the digestive tract to anatomical structures in the inner ear.

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Gold circles with attached purple corkscrew shapes represent gold nanoparticles against a black background.

Driving gene therapy with nonviral vectors 

Learn why nonviral vectors are on the rise in gene therapy development.
A 3D digital illustration of a viral spike protein on a cell surface, surrounded by colorful, floating antibodies in the background

Milestone: Leapfrogging to quantitative, high throughput protein detection and analysis

Researchers continuously push the boundaries of what’s possible with protein analysis tools.
Blue cancer cells attached to a cellular surface against a bright blue background in a 3D rendering of a cancer infection.

Advancing immuno-oncology research with cellular assays

Explore critical insights into immunogenicity and immunotoxicity assays for cancer therapies.
Drug Discovery News November 2024 Issue
Latest IssueVolume 20 • Issue 6 • November 2024

November 2024

November 2024 Issue

Explore this issue