Researchers reveal how cancer shuts down T cells

New study shows tumor cells eat up methionine, depriving T cells
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
ANN ARBOR, Michigan—If cancer is a series of puzzles, a new study has pieced together how several of those puzzles connect to form a bigger picture. One major piece is the immune system and why T cells stop doing their job. Another piece involves how histones are altered within immune cells, and a third piece is how a cell’s metabolism processes amino acids.
“Nobody knew if those questions were all connected. We were able to place several of these puzzles together and see how it works,” said Weiping Zou, M.D., Ph.D., Charles B. de Nancrede Professor of Surgery, Immunology and Biology at the University of Michigan and director of the Center of Excellence for Immunology and Immunotherapy at the U-M Rogel Cancer Center.
Zou is senior author on the paper, which was published in Nature. Multiple labs from the Rogel Cancer Center and collaborators from Poland were also involved in the study, which found a connection between these three separate puzzles. The study suggests that targeting the amino acid methionine transporter in tumor cells could make immunotherapy effective against more types of cancer.
Continue reading below...
An illustration showing red cancer cells surrounded by white immune cells interacting on a dark textured background.
ExplainersWhy does immunotherapy work better for some cancers than others?
A powerful tool in modern oncology, immunotherapy doesn’t work the same for everyone. Researchers are exploring why and developing ways to improve its effectiveness.
Read More
The picture begins with T cells. Cancer can prevent T cells from mounting an attack against it. But what causes this?
Researchers looked at the tumor microenvironment, into how tumors metabolize amino acids. They found that an amino acid called methionine had the most impact on T cell survival and function. T cells with low levels of methionine became abnormal. Low methionine in the T cells also altered histone patterns that caused T cells to be impaired.
Introducing tumor cells to the picture creates a fight between the tumor cells and the T cells for methionine. Over and over, the tumor cells win the fight — taking the methionine from the T cells and rendering them ineffective. Previous research has considered a systemic approach to starve tumor cells of methionine, with the idea that the tumor cells are addicted to it. But, Zou noted, this study shows why that approach may be a double-edged sword.
Continue reading below...
A digital illustration showing a T cell attacking a cancer cell, symbolizing the promise of immune-based therapies in tackling disease.
Ebooks Advancing cell therapies with smarter strategies
Researchers are finding creative ways to make cell therapies safer and more effective.
Read More
“You have competition between tumor cells and T cells for methionine. The T cells also need it. If you starve the tumor cells of methionine, the T cells don’t get it either,” Zou pointed out. “You want to selectively delete the methionine for the tumor cells and not for the T cells.”
The study also found that supplementing methionine actually restored T cell function. High enough levels of methionine meant there was enough for both tumor cells and T cells. Tumor cells have more of the transporters that deliver methionine, and researchers found that impairing those transporters resulted in healthier T cells, as the T cells could compete for methionine.
“There are still a lot of mechanistic details we have not worked out, particularly the detailed metabolic pathways of methionine metabolism,” continued Zou. “We also need to understand how metabolism pathways may be different from tumor cells and T cells. We hope to find a target that is relatively specific to tumor cells so that we do not harm the T cells but impact the tumor.”
Continue reading below...
Red tumor cells are shown against a teal backdrop showing attachment to tissue.
WhitepaperDecoding the tumor microenvironment with immune profiling
Integrating multiplexed immunohistochemistry with spatial analysis offers a practical way to uncover tumor-immune dynamics.
Read More
Zou has been awarded a $3.2 million grant from the National Cancer Institute to advance this work. He is also working with drug discovery experts to identify a small molecule inhibitor that targets methionine in tumor cells.

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue