Quantum dot calm

Nanocrystalline quantum dots (Qdots)
| 1 min read
Register for free to listen to this article
Listen with Speechify
0:00
1:00
CARLSBAD, Calif.—Nanocrystalline quantum dots (Qdots) are seeing increased use in high-throughput binding experiments, but researchers from Invitrogen noted that most published work involved home-made systems, limiting their widespread utility. They therefore undertook a systematic examination of binding assays using commercially available Qdots and Alexa Fluor dyes, publishing their findings in Analytical Biochemistry.
Continue reading below...
3D illustration of immune cells in purple interacting with red cancerous tissue.
WebinarsDecoding immune–tumor interactions with functional genomics
Discover how coculture models and CRISPR tools reveal new insights into tumour microenvironments.
Read More
Initially, the researchers conjugated small-molecule haptens (biotin, fluorescein and cortisol) to Qdots and monitored the binding of the fluorescent dyes conjugated to anti-hapten antibodies or natural binding partners using fluorescence resonance energy transfer (FRET) whereby low-wavelength light stimulated Qdot fluorescence that in turn stimulated dye fluorescence. They then used this system as the basis of a homogeneous competitive immunoassay of free haptens.
Using biotin-conjugated Qdots, the researchers found that streptavidin-conjugated Alexa Fluor had a 100-fold lower limit of detection for the biotin derivative biocytin than anti-biotin Alexa Fluor. Furthermore, they noted that fully biotinylated Qdots were 10-fold less sensitive than Qdots with 25 percent biotin coverage. They were likewise able to detect fluorescein and cortisol using antibody-conjugated dyes. As such, the researchers suggested that this study provides a first-step to widely applicable binding assays using Qdots.

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

3D illustration of ciliated cells, with cilia shown in blue.
Ultraprecise proteomic analysis reveals new insights into the molecular machinery of cilia.
Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue