| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
NASHVILLE, Tenn.—Whereas type 1 diabetes results from a lack of ability to produce insulin (or a vastly diminished ability), usually strikes early in life and is a near-lifelong management problem, type 2 diabetes (T2D) is a different beast. The “diabetes” part might be shared, but T2D often strikes in adulthood and is frequently related to other co-morbidities, such as obesity and lifestyle choices. A hallmark of T2D is insulin resistance.
 
Now, researchers at Vanderbilt University have gained new insight into insulin resistance—and possibly new avenues for reversing it—by discovering how insulin crosses the capillary endothelium to exit blood vessels and stimulate skeletal muscle cells. They published their results early this year in the Journal of Clinical Investigation.
 
The team used a novel fluorescence microscopy technique and, in so doing, were able to measure insulin movement across the endothelial wall of skeletal muscle capillaries in the mouse. The microscopy technique developed for these studies, the researchers note, could also be applied to other drugs and hormones to study molecular access to a range of tissues.
 
“The muscle capillary wall is a formidable barrier to insulin’s action on muscles,” said Dr. David Wasserman, the Annie Mary Lyle Professor of Molecular Physiology and Biophysics at Vanderbilt and director of the Vanderbilt-NIH Mouse Metabolic Phenotyping Center. “It is the rate-limiting step for muscle insulin action and a potential site of regulation. Defining how insulin leaves the capillary is essential to understanding and treating insulin resistance.”
 
The paper’s lead author, Ian Williams—a graduate student in Wasserman’s lab—made the advancements necessary to measure aspects of microcirculatory function simultaneously with molecular transport in live mice.
 
One of insulin’s key functions is to stimulate glucose uptake by muscle, where it is stored or used as fuel, but in order to stimulate glucose uptake insulin must cross the endothelial barrier into muscle tissue. Impaired delivery of insulin into tissue is a key feature of insulin resistance and thus T2D. But it wasn’t truly understood how insulin gets from blood vessels to the muscle cells before the Vanderbilt team used the new quantitative intravital fluorescence microscopy technique and combined it with mathematical modeling, demonstrating that insulin moves across the endothelium by fluid-phase transport.
 
“Such movement is not dependent on the presence of endothelial insulin receptors or limited by saturation of endothelial transport processes, as had been hypothesized previously,” according to the university.
 
Better understanding of the variables controlling insulin movement across the endothelial wall could lead to improved strategies for reversing insulin resistance, including development of small molecules that enhance insulin delivery or novel insulin analogs that can access muscle more easily, according to the researchers.

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Reliable fluid biomarkers strategies for clinical neuroscience research

Reliable fluid biomarkers strategies for clinical neuroscience research

Explore how validated fluid biomarker assays advance clinical research for neurological diseases.
A group of blue capsules is scattered on a bright yellow surface, with one capsule opened to reveal white powder inside.

Understanding drug impurities: types, sources, and analytical strategies

Unseen and often unexpected, drug impurities can slip in at every drug development stage, making their detection and control essential.
Laboratorian with a white coat and blue gloves pipettes green liquid into a beaker with multicolored liquids in beakers and tubes in the blue-tinged, sterile laboratory background.

Discovering cutting-edge nitrosamine analysis in pharmaceuticals

New tools help researchers detect and manage harmful nitrosamine impurities in drugs such as monoclonal antibodies.
Drug Discovery News March 2025 Issue
Latest IssueVolume 21 • Issue 1 • March 2025

March 2025

March 2025 Issue

Explore this issue