Of eggs and enzymes

‘Egg unboiling’ technology could change the way enzymes are used in research
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
JP Morgan once famously said that you cannot unscramble eggs, but Australian chemistry professor Colin Raston indirectly challenged that adage. In 2015, Raston created the Vortex Fluidic Device (VFD), which uses variable speed rotation to unbind proteins, and followed a hunch to feed in a cooked hen egg. Raston found himself stunned when that egg emerged from the device uncooked.
Continue reading below...
Illustration of diverse healthcare professionals interacting with digital medical data and health records on virtual screens.
WebinarsAccelerating rare disease clinical trials
Explore how a rare kidney disease trial achieved faster patient enrollment with data-informed strategies and collaborative partnerships.
Read More
Now, researchers from Flinders University in South Australia working with the University of California, Irvine, are applying the VFD technology to transform the way enzymes are used in research and development in the fuel and pharmaceutical industries.
“What we have done is established this new paradigm so you can come up with these complex molecules that would have taken a long time in the laboratory using the old paradigm but you can now do it in a fraction of the time,” said Raston.
“It’s not what we set out to do, to unboil an egg, but it’s the way of explaining the science involved and helping the wider world realize the momentousness of it,” he noted in 2015 after he was awarded an Ig Nobel prize (a kind of parody of the Nobel Prize that honors achievements “that first make people laugh, and then make them think") for the egg unboiling work by a panel of genuine Nobel Laureates.
Continue reading below...
A scientist wearing gloves handles a pipette over a petri dish and a color-coded microplate in a laboratory setting.
Application NoteThe unsung tools behind analytical testing success
Learn how fundamental laboratory tools like pipettes and balances support analytical precision.
Read More
The momentousness of the VFD is starting to be seen in the work of Flinders University. Experimentation has proven that the VFD allows for improved enzyme catalization. Use of enzymes in research has been traditionally hampered by long reaction times and lack of uniformity in outcomes. The VFD changes that dramatically.
“Enzymes make life possible by catalyzing diverse and challenging chemical transformations with exquisite precision and no nasty byproducts,” said lead researcher Joshua Britton.
Enzymes are inserted into the VFD along with water, which serves as a benign solvent, reducing the environmental impact of such research. The VFD works to spin bound proteins so quickly that they fly apart and refold into new molecules, allowing the execution of more tightly controlled chemical processes, saving researchers time and reducing chemical waste.
“If you think of protein as a long piece of spaghetti, it coils up in a special way [often] into structurally incorrect shapes which make them difficult to process. The VFD causes the proteins to unwind and refold normally,” explains Raston.
Continue reading below...
A 3D rendering of round clear cells with multiple red round nodules in each cellular center representing nuclei, suspended in a liquid, clear backdrop.
WhitepaperAutomating 3D cell selection
Discover precise automated tools for organoid and spheroid handling.
Read More
The added ability to fine-tune the frequencies of the pressure waves within the VFD ensures optimal responses from the enzymes in record time and, according the researchers, four of their tested enzymes displayed an average sevenfold acceleration, with another achieving an average 15-fold enhancement. “In solving a common problem in enzyme catalysis, a powerful, generalizable tool for enzyme acceleration has been uncovered,” say scientists from Flinders.
Another application utilized the VFD to precisely cut carbon nanotubes used in cancer drug delivery. The ability to cut the nanotubes with such precision offers uniformity in the products, and allows for improved drug delivery. “100 nanometers is the ideal length for getting into tumors so you can actually functionalize [the nanotubes] to target cancer cells,” says Raston.
This ability to slice nanotubes is a simpler and cheaper process than previous methods. Flinders University Ph.D. student Kasturi Vimalanathan, who played a key role in discovering new applications for the VFD device, said the machine’s ability to cut carbon nanotubes to a similar length also significantly increased the efficiency of solar cells.
Continue reading below...
An image of a western blot transfer showing the white, square transfer membrane with orange and blue bands representing the protein molecules undergoing transfer on a black and white machine.
CompendiumExploring stain-free western blotting
Researchers can achieve seamless western blot experiments by implementing advancements in stain-free technology, normalization methods, and compliance integration.
Read More
“They shorten the carbon nanotubes to fit in all the chemicals so it can withstand higher temperatures,” she said. “It increases the efficiency and enhances the photoelectric conversion because they can provide a shorter transportation pathway for these electrons. We can see cheaper solar panels on the back of this development.”
Unboiling eggs has come a long way, perhaps now to revolutionize enzyme research in the development of novel cancer drug therapies and other areas. As Raston said in 2015 after receiving the Ig Nobel award, “The sheer scale of this is mind-boggling. The global pharmaceutical industry alone is worth $160 billion annually, and the processing of proteins is central to it. It’s impossible to place a price on the value of this device.”

About the Author

Related Topics

Published In

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
A 3D rendering of red and yellow protein molecules floating in a fluid-like environment.
Discover approaches that shorten the path from DNA constructs to purified, functional proteins.
A 3D rendering of two DNA double helices in different colors, representing genetic diversity or molecular comparison on a light background.
By replacing conventional plasmid systems, cell-free DNA synthesis improves speed and quality in mRNA research.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue