New treatment potential for some breast cancers

PARP inhibitors may be able to treat more breast cancer subtypes than previously thought
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
HINXTON, U.K.—A team of British researchers has uncovered genetic indicators suggesting that a greater number of breast cancer cases than previously thought are treatable with existing PARP inhibitors. Scientists from the Wellcome Trust Sanger Institute and their collaborators determined that patterns of mutations—mutational signatures—in some breast cancer tumors were similar to mutations found in people with malfunctioning BRCA1 and BRCA2 genes. These findings suggest that 20 percent more breast cancer patients may benefit from PARP inhibitors currently used to treat BRCA1/BRCA2-related cancers.
Continue reading below...
An illustration showing red cancer cells surrounded by white immune cells interacting on a dark textured background.
ExplainersWhy does immunotherapy work better for some cancers than others?
A powerful tool in modern oncology, immunotherapy doesn’t work the same for everyone. Researchers are exploring why and developing ways to improve its effectiveness.
Read More
In the U.K.-based study, researchers analyzed the breast cancer genomes of 560 patients and looked for every single type of mutation they possibly could. The team developed a new computer-based tool called HRDetect able to discriminate between tumors with and without the BRCA1/BRCA2 mutation, based on the appearance of their genome. Cancer genomes without a mutation in the BRCA1 and BRCA2 genes are neat and organized, they say, whereas genomes with BRCA1/BRCA2-deficiency are chaotic.
HRDetect sees the tumor profile as if it is reading an X-ray, the researchers explain, and it can be applied across all tumors. The scientists discovered that many breast cancer patients had mutational signatures that were identical to people with faulty BRCA1 and BRCA2 genes, even though they had not inherited the mutations.
Dr. Helen Davies, joint first author from the Wellcome Trust Sanger Institute, said: “From the mutational signatures we were able to spot many more tumors with defects in their DNA repair machinery that we couldn’t see before. This was only possible by sequencing the entire genome of these cancers. Further work needs to be done as there could be tumors with the same mutational signature elsewhere in the body that may respond to these drugs.”
Continue reading below...
Illustration of diverse healthcare professionals interacting with digital medical data and health records on virtual screens.
WebinarsAccelerating rare disease clinical trials
Explore how a rare kidney disease trial achieved faster patient enrollment with data-informed strategies and collaborative partnerships.
Read More
The results were published in March in Nature Medicine and open up the possibility of one in five more women being treated with PARP inhibitors, a class of drug previously only thought to be effective for women with an inherited BRCA1 or BRCA2 mutation. This would need to be tested through a systematic clinical trial on a wider set of patients to see if they might also be responsive to the drugs, with participants being selected based on the mutational signatures of their tumor.
Sir Mike Stratton, director of the Sanger Institute, said: “This work uses mutational signatures to identify the complete set of cancers that will respond to certain drugs that are already known to be effective in a subset. To translate these results into treatments, further sequencing of cancer genomes and more clinical trials are urgently needed, but this is a most promising start.”
PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP). Several forms of cancer are more dependent on PARP for DNA repair than regular cells, making it an attractive target for cancer therapy. PARP proteins are known as DNA binding and repair proteins. When activated by DNA damage, these proteins recruit other proteins that do the actual work of repairing DNA. Under normal conditions, PARP proteins are released from DNA once the repair process is underway.
Continue reading below...
A digital illustration showing a T cell attacking a cancer cell, symbolizing the promise of immune-based therapies in tackling disease.
Ebooks Advancing cell therapies with smarter strategies
Researchers are finding creative ways to make cell therapies safer and more effective.
Read More
PARP inhibitors have been designed to specifically treat tumors with faulty BRCA1 and BRCA2 genes in breast and ovarian cancers, and their use against prostate cancer is currently being investigated. They appear to work in two ways. For cancers that are BRCA1/BRCA2-deficient, PARP is an alternative DNA repair mechanism that the cancer cells rely on. The drugs work by blocking the PARP DNA repair mechanism in BRCA1/BRCA2-deficient cancer cells, so damaged DNA is not mended, leading to cancer cell death. In addition, PARP inhibitors act to trap proteins on DNA strands, which are more toxic to cells than the unrepaired single-strand DNA breaks that accumulate in the absence of PARP activity, indicating that PARP inhibitors act as PARP poisons.
“In the past, clinical trials for PARP inhibitors have focused mainly on the [small percentage] of women with breast cancer related to faulty BRCA1 and BRCA2 genes. However, our study shows that there are many more people who have cancers that look like they have the same signatures and same weakness as patients with faulty BRCA1 and BRCA2 genes,” says Dr. Serena Nik-Zainal, lead author from the Wellcome Trust Sanger Institute. “We should explore if they could also benefit from PARP inhibitors. The results suggest that clinical trials now need to look at cancer patients who share the same genetic signature in their cancer. This could change how clinical trials are designed in the future.”

About the Author

Related Topics

Published In

Volume 13 - Issue 5 | May 2017

May 2017

May 2017 Issue

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue