MicroRNA inhibitors halt cancer cell growth

TSRI research says small-molecule RNA inhibitors can target and kill specific types of cancer
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
JUPITER, Fla.—In early March, scientists at the Disney Lab of The Scripps Research Institute (TSRI) announced they had designed two new drug candidates to target prostate and triple-negative breast cancers. The new research, published recently as two separate studies in ACS Central Science and the Journal of the American Chemical Society, demonstrates that a class of drugs called small-molecule RNA inhibitors can successfully target and kill specific types of cancer.
Continue reading below...
An illustration showing red cancer cells surrounded by white immune cells interacting on a dark textured background.
ExplainersWhy does immunotherapy work better for some cancers than others?
A powerful tool in modern oncology, immunotherapy doesn’t work the same for everyone. Researchers are exploring why and developing ways to improve its effectiveness.
Read More
“This is like designing a scalpel to precisely seek out and destroy a cancer—but with a pill and without surgery,” said Dr. Matthew D. Disney of the Department of Chemistry at TSRI’s Florida campus, who was senior author of both studies. In their ACS Central Science study, Disney and his colleagues used DNA sequencing to evaluate thousands of small molecules as potential drug candidates. The researchers were on the lookout for molecules that could bind precisely with defective RNAs.
This strategy led them to a compound which targets an RNA precursor molecule. Disney tells DDNews, “Targapremir-18a is a small-molecule drug that binds to a precursor to microRNA 18a. The compound inhibits the production of microRNA 18a, which is overexpressed and causative of prostate cancer.”
The scientists found that mature microRNA-18a inhibits a protein that suppresses cancer. When microRNA-18a is overexpressed, cancers just keep growing.
Disney and his team tested Targapremir-18a, and found that it could target microRNA-18a and trigger prostate cancer cell death. “Since microRNA-18a is overexpressed in cancer cells and helps to maintain them as cancerous, application of Targapremir-18a to cancer cells causes them to kill themselves,” Disney said.
Continue reading below...
A digital illustration showing a T cell attacking a cancer cell, symbolizing the promise of immune-based therapies in tackling disease.
Ebooks Advancing cell therapies with smarter strategies
Researchers are finding creative ways to make cell therapies safer and more effective.
Read More
“[Targapremir-18a] was tested in cancer cells isolated from patients. The compound silences the microRNA selectively, and causes prostate cancer cells to go into apoptosis or programmed cell death,” Disney continues. “[Next] we are planning to test the compound in mouse models.”
The precise binding of Targapremir-18a to microRNA-18a means a cancer drug that follows this strategy would be likely to kill prostate cancer cells without causing the broader side effects seen with many other cancer therapies, according to Disney.
And there may be even bigger implications. “We could apply the strategy used in this study to quickly identify and design small-molecule drugs for other RNA-associated diseases,” explained study first author Sai Velagapudi, a research associate in Disney’s lab.
Disney says Targapremir-18a and another agent, Targapremir-210, “both act by the same mechanism, and that is to bind to a precursor of these microRNAs and inhibit their production.” The same screening strategy used to find Targapremir-18a led the researchers to a drug candidate to target triple-negative breast cancer, as reported in the Journal of the American Chemical Society.
Continue reading below...
Red tumor cells are shown against a teal backdrop showing attachment to tissue.
WhitepaperDecoding the tumor microenvironment with immune profiling
Integrating multiplexed immunohistochemistry with spatial analysis offers a practical way to uncover tumor-immune dynamics.
Read More
Triple-negative breast cancer is especially hard to treat because it lacks the receptors, such as the estrogen receptor, targeted with other cancer drugs. Disney and his colleagues aimed to get around this problem by instead targeting microRNA-210, which is overexpressed in solid breast cancer tumors.
The researchers tested their drug compound, Targapremir-210, in mouse models of triple-negative breast cancer. They found that the therapy significantly slowed tumor growth. In fact, a single injected dose decreased tumor size by 60 percent over a three-week period. The researchers analyzed these smaller tumors and discovered that they also expressed less microRNA-210, compared with untreated tumors.
Targapremir-210 appears to work by reversing a circuit that tells cells to “survive at all costs” and become cancerous. With microRNA-210 in check, cells regain their normal function and cancer cannot grow. “We believe Targapremir-210 can provide a potentially more precise, targeted therapy that would not harm healthy cells,” said study first author and TSRI graduate student Matthew G. Costales.
Continue reading below...
A black mosquito is shown on pink human skin against a blurred green backdrop.
InfographicsDiscovering deeper insights into malaria research
Malaria continues to drive urgent research worldwide, with new therapies and tools emerging to combat the parasite’s complex lifecycle and global burden.
Read More
When asked if researchers plan to bring these drugs to trials in the near future, Disney says, “Yes, we are assessing compound toxicity and gearing up to get funding to advance these molecules for a clinical trial. We are searching for partners to accelerate these investigations.” The researchers also plan to further develop their molecule-screening strategy into a platform to test molecules against any form of RNA defect-related disease.

About the Author

Related Topics

Published In

Volume 13 - Issue 5 | May 2017

May 2017

May 2017 Issue

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue