Finding the ‘off switch’ for liver cancer

U.S. and Swiss researchers explore tumor suppressor protein that can target liver cancer
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Back in 1979, Dr. Tony Hunter made the groundbreaking discovery that the addition and subtraction of phosphate molecules to proteins on the amino acid tyrosine allows cells to control when key proteins are active and when they are not. With regard to cancer, he went on to show that growth was switched into an “always-on” mode when these phosphates malfunctioned—thus his work opened the doors to other researchers developing tyrosine kinase inhibitors to fight cancer, such as the antileukemia drug Gleevec.
Like so many researchers, Hunter didn’t stop with discovering the “on switch.” He and his colleagues continued to study the process of phosphorylation. But rather than focus solely on using kinases to add phosphates, they also looked into removing them with proteins called phosphatases, essentially creating on/off switches. Then, in 2015, the Hunter lab developed an antibody to identify and study phosphates bonded to another amino acid called histidine.
Continue reading below...
An illustration showing red cancer cells surrounded by white immune cells interacting on a dark textured background.
ExplainersWhy does immunotherapy work better for some cancers than others?
A powerful tool in modern oncology, immunotherapy doesn’t work the same for everyone. Researchers are exploring why and developing ways to improve its effectiveness.
Read More
Where that has led now is to Hunter—the American Cancer Society Professor at the Salk Institute in La Jolla, Calif.—and his team, together with researchers from Switzerland’s University of Basel and University Hospital Basel, discovering a protein called LHPP that acts as a molecular switch to turn off the uncontrolled growth of cells in liver cancer. The work appeared in print in the journal Nature on March 29.
In this most recent work, the team, led by Dr. Michael Hall of the Biozentrum at the University of Basel, examined these “switches” in a mouse model of hepatocellular carcinoma, the most common form of liver cancer. The team analyzed more than 4,000 proteins in healthy and diseased liver tissue, and when they were done, three proteins stood out: the histidine kinases NME1 and NME2 (which were elevated in tumor cells) and the histidine phosphatase LHPP (which was deficient).
“It is striking that LHPP is present in healthy tissue and completely absent in tumor tissue,” said Dr. Sravanth Hindupur, a postdoctoral researcher at the University of Basel and the paper’s first author. So the researchers explored histidine phosphorylation as a potential cancer target and discovered that levels of protein phosphorylated in histidine were significantly higher in the tumor tissue than in normal liver tissue.
Continue reading below...
3D illustration of immune cells in purple interacting with red cancerous tissue.
WebinarsDecoding immune–tumor interactions with functional genomics
Discover how coculture models and CRISPR tools reveal new insights into tumour microenvironments.
Read More
As the Salk Institute notes of the research, NME1 and NME2 were known histidine kinases, and LHPP had been suspected to be a histidine phosphatase. With further experiments, the team verified that not only is LHPP a histidine phosphatase, but it is also a tumor suppressor—essentially an off switch for cancer. Reintroducing LHPP into the liver of the model mice destined to develop tumors prevented the formation of tumors.
The thought is that this tumor suppressor could be useful as a biomarker to help diagnose liver cancer and monitor treatment of the disease. But more than that, it might be relevant for other cancer types. Regardless, the research findings add to the growing body of knowledge about cellular processes that promote and inhibit cancer.
“I think we’ve discovered a new control mechanism for cell proteins that, when disrupted, could be a driver for cancer,” says Hunter, who was one of the authors on the new paper. “It’s exciting because it offers the possibility of new therapeutics or new diagnostics for a cancer that’s basically untreatable—liver cancer—and potentially others, as well.”
Continue reading below...
Illustration of blue immune cells interacting with a red target cell.
WebinarsHuman coculture models for modern preclinical research
Explore how combining human immune and epithelial or cancer cells in vitro enhances predictive power in infectious disease and oncology research.
Read More
Moving on from the mice, the researchers next examined samples from human liver tumors and found a similar pattern: NME1 and NME2 levels were high and LHPP was low compared to healthy liver tissue. Furthermore, the Cancer Genome Atlas database, a collection of RNA sequences obtained from different human cancers, showed that a significant fraction of human liver cancers have low levels of LHPP, and that both disease severity and life expectancy are correlated with LHPP levels.
“The parallels between tyrosine phosphorylation and histidine phosphorylation are what really got me interested in the project,” adds Hunter. “Whether this can be used as a therapeutic avenue, I don’t know. But the fact that it could be so disease-relevant motivates me.”

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue