Finding needles

Although scientists can produce vast arrays of compounds easily, most of these compounds will fail as drug candidates
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
ANN ARBOR, Mich.—Although scientists can produce vast arrays of compounds easily, most of these compounds will fail as drug candidates. Computational screening helps, but univariate analysis approaches don't necessarily accommodate compound characteristic codependencies. Researchers at Pfizer, University of Georgia, and Georgia Institute of Technology may have addressed this problem.
Continue reading below...
Illustration of diverse healthcare professionals interacting with digital medical data and health records on virtual screens.
WebinarsAccelerating rare disease clinical trials
Explore how a rare kidney disease trial achieved faster patient enrollment with data-informed strategies and collaborative partnerships.
Read More
As they published in the Journal of Chemical Information and Modeling, the researchers took a two-step approach, developing a desirability function defined by individual compound characteristics (e.g., MW, rotatable bonds, cLogP) and a method known as sequential elimination of level combinations (SELC), which combines genetic algorithms (GAs) and "forbidden arrays" to identify and screen likely candidates.
Using the desirability function, the researchers calculate scores for each characteristic as a function of its position within limits based on a priori knowledge. They then use a multiplicative approach to set the overall compound score. To ensure they don't throw out the baby with the bath water, however, they incorporate a penalty term to prevent poor individual desirability characteristics from dominating the whole score.
With SELC, a series of compounds are synthesized and screened for their fitness. The researchers place poor performers in a "forbidden array" that prevents potentially poor compounds from being synthesized in later rounds and may be prepopulated from data known in advance. They then recombine and mutate the best performers over several cycles via GAs to generate "offspring" compounds for further testing. Unlike standard GAs, however, SELC incorporates prior data into the mutation probabilities, thereby hedging the bets of designing the most likely candidates.
Continue reading below...
A scientist wearing gloves handles a pipette over a petri dish and a color-coded microplate in a laboratory setting.
Application NoteThe unsung tools behind analytical testing success
Learn how fundamental laboratory tools like pipettes and balances support analytical precision.
Read More
In a proof-of-concept study, the researchers found that SELC was able to identify several strong drug candidates and significantly improved their understanding of the chemical space and yet only used 15% of the resources required by a typical screen.

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue