Could microbiome research tool revolutionize drug development?

The University of Luxembourg announces ‘breakthrough’ HuMiX organ-on-a-chip model for the human gastrointestinal tract
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
LUXEMBOURG CITY, Luxembourg—The human microbiome as an area of research for potential therapeutic value continues to gain popularity and, in that vein, the University of Luxembourg recently announced the publication of a research article in the scientific journal Nature Communications based on research on the interaction between microorganisms in the gut and the human body through the development of the artificial Human-Microbial X(cross)-talk model, or HuMiX.
Continue reading below...
3D illustration of immune cells in purple interacting with red cancerous tissue.
WebinarsDecoding immune–tumor interactions with functional genomics
Discover how coculture models and CRISPR tools reveal new insights into tumour microenvironments.
Read More
HuMiX represents an organ-on-a-chip model for the human gastrointestinal tract, and it has been developed to study the interaction between the microbiome, the community of all microbial organisms that live in and on our body and the human host—all in vitro. The model and resulting insights are expected to help provide a better understanding of whether changes in the gut’s microbiome cause disease, or if such changes are a consequence of the disease.
According to the university, HuMiX is the only model able to replicate the community of microorganisms in the gut while also allowing the study of their impact on human cell physiology, noting, “This technological breakthrough has not only the potential to change the way patients are given drugs by prescreening their effects on patient-derived cells and microbiota outside of the body, but also open up a new market segment for HuMiX in clinical drug development.”
Commenting on the article, Dr. Paul Wilmes, principal investigator at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg and senior author on the paper said in a statement: “Insights into the function of the human microbiome are a key to our understanding of human health and disease. By mimicking its function and the repercussions of distinct microbiota on human cells, we are now able to better understand the gut microbiome and also how it reacts to, for example, distinct drugs or dietary regimes.”
Continue reading below...
Illustration of blue immune cells interacting with a red target cell.
WebinarsHuman coculture models for modern preclinical research
Explore how combining human immune and epithelial or cancer cells in vitro enhances predictive power in infectious disease and oncology research.
Read More
The key benefit of HuMiX technology is that it can help determine a drug’s suitability in humans and improve their overall success in the drug development pipeline. The model reportedly will for the first time allow preclinical testing in an environment that is analogous to the human system. Animal models, such as germ-free mice, exhibit important limitations with respect to the topology of their gastrointestinal tract, their diet and, importantly, their immune system.
Asked whether this technology will replace the use of animals in the drug development process, Wilmes tells DDNews, “Our precise aim is to have HuMiX at least partially replace the use of animals in research and in the drug development process. From our point of view it is essential to get human-relevant readouts (which HuMiX provides) as humans are of course quite different from, say, a mouse. With respect to the human microbiome in particular, important differences are apparent—most notably a different microbiome composition in mice, a greatly differing gut topology, a different diet and a quite different immune system.”
Continue reading below...
Cartoon illustration of four secret agent-themed cells with unique disguises, representing different unconventional T cell types.
InfographicsMeet the unconventional T cell crew
They don’t play by the rules, but the immune system wouldn’t work without them.
Read More
Dr. Pranjul Shah, now business development and innovation expert at the LCSB and first author of the study, sees clear economic potential in the technology and is preparing as entrepreneur-in-residence for a spin-off company—OrgaMime.
“The human microbiome market is one of the fastest growing niche markets at the interface of therapeutics and diagnostics. With the broad focus of the microbiome industry, even at pessimistic estimates, the industry is expected to reach $658 million by 2023,” said Shah in the news release about the article’s publication. “HuMiX is well positioned to be an enabling technology for a range of drug discovery programs at newly founded start-ups, pharma as well as nutraceutical companies. It has the potential to help further understand and consequently aid in the discovery of new treatments for obesity, inflammatory bowel disease, diabetes, cancer, and neurodegenerative diseases.”
The published paper is the result of an interdisciplinary collaboration between scientific teams at the LCSB, the Center for Applied NanoBioscience and Medicine at the University of Arizona and the Department of Infection and Immunity at the Luxembourg Institute of Health.
Continue reading below...
3D illustration of a fluid-like blue antibody molecule, with splash-like textures on a light background.
WebinarsBlow past protein formulation and stability hurdles with Aunty
Discover a high-throughput, high-resolution approach to biologics stability screening that eliminates bottlenecks in formulation development.
Read More
As to how they came together, Wilmes says, “I met Prof. Frederic Zenhausern [of the University of Arizona] at a meeting and as I had an interest in microfluidics for high-throughput cell culture. We got talking and soon decided to collaborate together to develop HuMiX. The collaboration with the Department of Infection and Immunity at the Luxembourg Institute of Health stems from the fact that Dr. Carole Devaux there has a long-standing research interest focused on HIV infection in the gut. Given her expertise and research interests, we have collaborated with her group on inclusion of immune cells in the HuMiX model for ultimately modeling HIV infection in the gut.”

About the Author

Related Topics

Published In

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

3D illustration of ciliated cells, with cilia shown in blue.
Ultraprecise proteomic analysis reveals new insights into the molecular machinery of cilia.
Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue