| 1 min read
Register for free to listen to this article
Listen with Speechify
0:00
1:00
SANTA CRUZ, Calif.—In the search for new drugs, it is sometimes beneficial to go back to basics. In the case of antifungals research, this includes the use of halo assays where potential drugs are touched to plated yeast and researchers look for open halos that indicate cell death. Looking to take this assay to the next step, researchers at University of California, Santa Cruz and colleagues at other institutes developed a high-throughput yeast halo assay to screen chemical libraries for possible antifungal activity.
 
As they reported in the Journal of Natural Products, the basic set up involves the transfer of compounds from a 384-well plate using automated array pins onto agar plates confluent with yeast. The presence of halos is then determined using optical density readings with a plate reader.
 
Initially, the researchers screened 3104 compounds from the NCI's Diversity, Mechanistic, and Natural Product libraries and detected 46 hits—a hit rate of 1.5 percent that compares favorably with published rates. Of these compounds, they noted several known fungal toxins, but the majority did not have known molecular targets in yeast. They then randomly selected 22 compounds from Diversity library and measured their IC20 values in liquid culture. They found a good correlation between halo size and IC20 value.
 
The researchers then screened in-house extracts of marine sponges and sponge-derived fungi cultures and identified one compound—crambescidin 800—that had been previously noted for its ability to inhibit HIV-1 and cytotoxicity toward some cancer cell lines. The assay offers the potential of renewed vigor in antifungal generation, a field that the authors suggest has yielded few surprises in the last three decades.

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

A black mosquito is shown on pink human skin against a blurred green backdrop.

Discovering deeper insights into malaria research

Malaria continues to drive urgent research worldwide, with new therapies and tools emerging to combat the parasite’s complex lifecycle and global burden.
Three burgundy round and linear conformations of oligonucleotides are shown against a black background.

Accelerating RNA therapeutic testing with liver microphysiological platforms

Researchers can now study oligonucleotide delivery and efficacy in a system that models a real human liver.
A 3D-rendered illustration of a eukaryotic cell highlighting organelles such as the nucleus, endoplasmic reticulum, mitochondria, and cytoskeletal structures in pink and purple tones.

Shining light on the subcellular proteome

Discover how innovative proteomics tools help researchers peer into once inaccessible organelles, allowing for new targets for drug discovery and development.
Drug Discovery News March 2025 Issue
Latest IssueVolume 21 • Issue 1 • March 2025

March 2025

March 2025 Issue

Explore this issue