Mitochondria.

Hydrogen sulfide signaling in human cells helps to promote the health of mitochondria.

credit: iStock.com/inkoly

A touch of toxic gas could power health

Although harmful in large quantities, hydrogen sulfide may ameliorate the health consequences of aging when small doses are applied to the mitochondria.
Andrew Saintsing, PhD
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00

The dose makes the poison. That adage is just as true of hazardous chemicals as it is of life-sustaining substances like water and oxygen. For instance, foul-smelling hydrogen sulfide (H2S) gas can be lethal if someone inhales too much in a sewer or a swamp, and yet, human cells produce it in small quantities as a critical signaling molecule.  

In a recent study published in the Proceedings of the National Academy of Sciences, a team of researchers evaluated the effects of a mitochondria-targeted H2S treatment on the health and longevity of Caenorhabditis elegans nematodes (1). The researchers hope that their work will inform better strategies for using the gas to improve health in humans, particularly by slowing the progression of muscular and neurological decline as well as other diseases that typically affect the elderly. They’re not necessarily expecting to find the elixir of life. “It’s just delaying the onset of age and maintaining health for as long as possible,” said Matt Whiteman, one of the leaders of the project and a pharmacologist at the University of Exeter.

Most diseases will have a mitochondrial dysfunction component to them. If you can fix [it], you’ve got a high chance of at least delaying the disease progression or hopefully reversing some of it. 
- Matt Whiteman, University of Exeter

Whiteman has been exploring the health benefits of treating animals with low quantities of externally produced H2S for years. He became particularly interested in understanding the effects of H2S on mitochondria because evidence suggests that H2S performs a number of biological functions that support mitochondrial health, such as facilitating mitochondrial DNA repair and providing antioxidant protection (2). Aging bodies tend to lose their mitochondria, but treating these organelles with H2S could prevent that loss and alleviate associated health consequences (3). 

Whiteman previously helped develop a molecule called GYY4137 that dissolves in water and releases H2S gradually over time, introducing the sulfurous substance to the cell in an untargeted manner (4). He later described a compound called AP39, which consists of one group of atoms that helps locate mitochondria within cells and another that slowly generates H2S once the compound is in place (5). In both cases, the goal was to avoid flooding cells with large amounts of H2S all at once.

The current study revealed that because AP39 specifically targets the mitochondria, it can produce health benefits at even lower quantities than GYY4137. Whiteman and his team found that both treatments extended the lifespan of C. elegans larvae, but that they had to treat the animals with 1,000 times more GYY4137 to achieve the same effect. Chris Hine, a physiologist at the Cleveland Clinic Lerner Research Institute who was not involved in the study, was excited to see this result for AP39. “That might help you avoid potential toxicities once you potentially use this in humans because in humans, not all cell types have the same resistance to hydrogen sulfide,” he said. “It’s always best to have a lowest effective dose.”

A Caenorhabditis elegans against a black background.
Matt Whiteman studies the effects of hydrogen sulfide on health and longevity in model organisms such as the C. elegans nematode.
credit: istock.com/HeitiPaves

Not only did AP39 increase the longevity of the C. elegans  worms, but it also kept them healthier later in life. Worms that received the treatment as larvae stayed more active and displayed higher strength across their lifespan than untreated worms. Similar health benefits occurred even for worms that received AP39 as adults, although the compound did not extend the lifespans of those worms. While the mitochondria in the untreated worms’ cells broke down rapidly once they reached adulthood, the mitochondria in the worms treated with AP39 at either life stage remained healthy for longer. 

Whiteman sees a world of potential in that result. “Most diseases will have a mitochondrial dysfunction component to them,” he said. “If you can fix [it], you’ve got a high chance of at least delaying the disease progression or hopefully reversing some of it.”   

Whiteman’s team also found that knocking down the genes that enable cells in the C. elegans worms to produce their own H2S prevented the animals from realizing any health benefits from AP39. The researchers speculate that the H2S-producing machinery plays a larger role in cellular health beyond the direct effects of H2S on mitochondria, and that eliminating that machinery had deleterious consequences. 

Hine found this idea intriguing. “You think, ‘Well, if you take away the endogenous production and you supplement it with exogenous, you should be okay.’ It wasn’t. The results are surprising in that context,” he said. “It opens up new doors for investigation.”

For now, the team is exploring the effects of additional mitochondria-targeting H2S-delivering compounds. Since the discovery of AP39 in 2014, Whiteman has developed new and improved (and propriety) molecules at his company MitoRx Therapeutics. “If we put the newest stuff in the same models, they behave the same way but better,” he said. Scientists at the company are also working to identify specific disease applications for their products. 

“Aging is difficult to drug. There’s so much complexity with it,” Whiteman said. “Picking the right disease indications is going to be key.”

References

  1. Vintila, A. et al. Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans. PNAS  120, e2216141120 (2023).
  2. Szabo, C. & Papapetropoulos, A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmocol Rev  69, 497-564 (2017).
  3. López-Otín, C. et al. The hallmarks of aging. Cell  153, 1194-1217 (2013).
  4. Li, L. et al. Characterization of a Novel, Water-Soluble Hydrogen Sulfide–Releasing Molecule (GYY4137). Circulation  117, 2351-2360 (2008).
  5. Szczesny, B. et al. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide  41, 120-130 (2014).

About the Author

  • Andrew Saintsing, PhD
    Andrew joined Drug Discovery News as an Intern in 2023. He earned his PhD from the University of California, Berkeley in 2022 and has written for Integrative and Comparative Biology and the Journal of Experimental Biology. As an intern at DDN, he writes about everything from microbes in the digestive tract to anatomical structures in the inner ear.

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

A scientist wearing gloves handles a pipette over a petri dish and a color-coded microplate in a laboratory setting.

The unsung tools behind analytical testing success

Learn how fundamental laboratory tools like pipettes and balances support analytical precision.
A 3D rendering of motor neurons lit up with blue, purple, orange, and green coloring showing synapses against a black background.

Improving ALS research with pluripotent stem cell-derived models 

Discover new advancements in modeling amyotrophic lateral sclerosis.

Automating 3D cell selection

Discover precise automated tools for organoid and spheroid handling. 
Drug Discovery News November 2024 Issue
Latest IssueVolume 20 • Issue 6 • November 2024

November 2024

November 2024 Issue

Explore this issue