A new compound sets its sights on C. diff

An “ultrapotent” compound may help treat C. difficile infections and reduce recurrence
| 2 min read
Register for free to listen to this article
Listen with Speechify
0:00
2:00
WEST LAFAYETTE, Ind.—Clostridioides difficile, also known as C. diff, is a leading cause of health care-associated infection in the U.S. Two antibiotics, vancomycin and fidaxomicin, are approved by the U.S. Food and Drug Administration for the treatment of C. diff, but even these therapies suffer from high treatment failure and recurrence.
Continue reading below...
A black mosquito is shown on pink human skin against a blurred green backdrop.
InfographicsDiscovering deeper insights into malaria research
Malaria continues to drive urgent research worldwide, with new therapies and tools emerging to combat the parasite’s complex lifecycle and global burden.
Read More
Purdue University researchers have advanced novel compounds they developed to help treat patients with C. diff, which is one of four bacteria considered an urgent threat by the Centers for Disease Control and Prevention. Their work was published in an article in the Journal of Medicinal Chemistry.
“Our compounds have several advantages, including ultrapotent activities with minimum inhibitory concentration values as low as 0.003 μg/mL,” said Herman O. Sintim, the Drug Discovery Professor of Chemistry at Purdue University. “Our compounds also do not kill good bacteria at concentrations that kill C. diff and performed significantly better than current antibiotics in preventing recurrence. These are significant advantages for patients dealing with this difficult bacterial infection.”
“Trifluoromethylthio containing N-(1,3,4-oxadiazol-2-yl) benzamides displayed very potent activities (sub-µg/mL minimum inhibitory concentration (MIC) values) against Gram-positive bacteria,” notes the article abstract. “Here, we report remarkable antibacterial activity enhancement via halogen substitutions, which afford new anti-C. difficile agents with ultrapotent activities (MICs as low as 0.003 µg/mL (0.007 µM)) that surpassed the activity of vancomycin against C. difficile clinical isolates.”
Continue reading below...
A white, pink, and blue 3D molecular structure of a simple sugar is shown against a light purple background.
WebinarsAdding a little sugar: what glycomics can bring to medicine
Discover how glycoscience is transforming how scientists understand diseases and opening new doors for drug discovery.
Read More
“The most promising compound in the series, HSGN-218, was non-toxic to mammalian colon cells and is gut restrictive. In addition, HSGN-218 protected mice from CDI [C. difficile infections] recurrence,” the article continues. “Not only does this work provide a potential clinical lead for the development of C. difficile therapeutics but also it highlights dramatic drug potency enhancement via halogen substitution.”
Sintim pointed out that HSGN-218 has been shown to be one of the most potent compounds ever produced for use against C. diff.
“This is part of our work to create new solutions to treat diseases and infections, which are resistant to current treatment options,” added Sintim, who is also a member of the Purdue University Center for Cancer Research and the Purdue Institute for Drug Discovery. “This work provides a potential clinical lead for the development of C. diff therapeutics and also highlights dramatic drug potency enhancement via halogen substitution.”

About the Author

Related Topics

Loading Next Article...
Loading Next Article...
Subscribe to Newsletter

Subscribe to our eNewsletters

Stay connected with all of the latest from Drug Discovery News.

Subscribe

Sponsored

Close-up of a researcher using a stylus to draw or interact with digital molecular structures on a blue scientific interface.
When molecules outgrow the limits of sketches and strings, researchers need a new way to describe and communicate them.
Portrait of Scott Weitze, Vice President of Research and Technical Standards at My Green Lab, beside text that reads “Tell us what you know: Bringing sustainability into scientific research,” with the My Green Lab logo.
Laboratories account for a surprising share of global emissions and plastic waste, making sustainability a priority for modern research.
3D illustration of RNA molecules on a gradient blue background.
With diverse emerging modalities and innovative delivery strategies, RNA therapeutics are tackling complex diseases and unmet medical needs.
Drug Discovery News September 2025 Issue
Latest IssueVolume 21 • Issue 3 • September 2025

September 2025

September 2025 Issue

Explore this issue